Preliminary Exam in Analysis Fall 2015

INSTRUCTIONS:

(1) This exam has three parts: I (measure theory), II (functional analysis), and III (complex analysis). Do three problems from each part.
(2) In each problem, full credit requires proving that your answer is correct. You may quote and use theorems and formulas. But if a problem asks you to state or prove a theorem or a formula, you need to provide the full details.

Part I. Measure Theory

Do three of the following five problems.
(1) Let E be a Lebesgue measurable subset of \mathbb{R}^{d}.
(a) Define what it means for a function $f: E \rightarrow \mathbb{R}$ to be measurable.
(b) Show that if f is measurable then so is $|f|$.
(c) Let f and g be measurable functions defined on E. Show that $f+g$ is measurable.
(2) Let (X, \mathcal{M}, μ) be a σ-finite measure space.
(a) State the Monotone Convergence Theorem.
(b) Show that if f_{1}, f_{2}, \ldots are nonnegative measurable functions on X then

$$
\int_{X}\left(\sum_{n=1}^{\infty} f_{n}\right) d \mu=\sum_{n=1}^{\infty} \int_{X} f_{n} d \mu
$$

(c) Suppose E_{1}, E_{2}, \ldots are measurable sets such that $\sum_{n=1}^{\infty} \mu\left(E_{n}\right)<\infty$. Using part (b), show that for almost every $x \in X$, the set $\left\{n \in \mathbb{N} \mid x \in E_{n}\right\}$ is finite.
(3) Let f be an integrable function on \mathbb{R}^{d} with respect to the Lebesgue measure m. Show that for every $\varepsilon>0$ there exists a $\delta>0$ such that $\int_{E}|f| d m<\varepsilon$ whenever E is a measurable set with $m(E)<\delta$.
(4) Let $\left\{f_{n}\right\}_{n \geq 1}$ be a sequence of functions in $L^{1}(\mathbb{R})$ with respect to the Lebesgue measure m. Suppose that f_{n} converges pointwise to a function $f \in L^{1}(\mathbb{R})$. Under each of the following assumptions, does f_{n} converge to f in the L^{1} norm?
(a) $\left|f_{n}\right| \leq 1$.
(b) $\operatorname{supp}\left(f_{n}\right)$, the support of f_{n}, is contained in $[0,1]$.
(c) Both (a) and (b) hold.
(d) $m\left(\operatorname{supp}\left(f_{n}\right)\right) \leq 1$ and $\left|f_{n}\right| \leq 1$.

In each case, you must give a proof or a counterexample. You may quote theorems without proof.
(5) Let f be a measurable function on a σ-finite measure space (X, \mathcal{M}, μ), with $f>0$ almost everywhere. Show that if E is a measurable set with $\int_{E} f d \mu=0$, then $\mu(E)=0$.

Part II. Functional Analysis

Do three of the following five problems.
(1) Let $\mathcal{F}: L^{2}(\mathbb{R}, d x) \rightarrow L^{2}(\mathbb{R}, d x)$ denote the Fourier transform on \mathbb{R}.
(a) Show that there exists a unique function $g \in L^{2}(\mathbb{R}, d x)$ such that $\mathcal{F} g(x)=e^{-|x|}$.
(b) Calculate $\|g\|_{L^{2}}$.
(c) Is $g \in C^{\infty}(\mathbb{R}) \cap L^{2}(\mathbb{R})$? Prove that your answer is correct.
(d) Is g of rapid decay, i.e., is it true that for all nonnegative integer m there is a constant C_{m} such that $|g(y)| \leq C_{m}(1+|y|)^{-m}$ for all $y \in \mathbb{R}$?
(2) Let H be a separable Hilbert space. Prove from scratch (without quoting theorems from a text) that every bounded linear functional $\Lambda: H \rightarrow \mathbb{C}$ is given by the inner product with some vector $v \in H: \Lambda(u)=\langle u, v\rangle$.
(3) Let $1 \leq p<\infty$ and $q=p /(p-1)$ be a pair of conjugate exponents. Suppose that $f:[0,1] \rightarrow \mathbb{R}$ is a real valued function such that $f g$ is integrable for all $g \in L^{p}[0,1]$. Show that $f \in L^{q}[0,1]$.
(4) Suppose that T is an everywhere defined symmetric linear operator on a Hilbert space $H,\langle T x, y\rangle=$ $\langle x, T y\rangle$. Prove that T is a bounded operator.
(5) The following is a sequence of problems on $C[-1,1]$ and $L^{\infty}[-1,1]$.
(a) Define the Banach spaces $C[-1,1]$ and $L^{\infty}[-1,1]$ where both spaces are equipped with the L^{∞} norm (i.e. define this norm). Here $C[-1,1]$ is the space of continuous functions on $[-1,1]$.
(b) Is $C[-1,1]$ a closed subspace of $L^{\infty}[-1,1]$? Prove that your answer is correct.
(c) Let δ_{0} be the point mass measure at 0 . Show that $\left\langle\delta_{0}, f\right\rangle=f(0)$ defines a bounded linear functional on $C[-1,1]$. What is its norm?
(d) Does δ_{0} extend from $C[-1,1]$ to $L^{\infty}[-1,1]$ as a bounded linear functional? Explain your answer. You can cite relevant theorems but you do not need to prove them.

Part III. Complex Analysis

Do three of the following five problems.
(1) Let $f(z)=1 /\left(z^{2}-1\right)$.
(a) Show that f has a well-defined analytic primitive on the slit plane $\mathbb{C} \backslash[-1,1]$.
(b) Compute the integral $\int_{\gamma} f(z) d z$ along the path $\gamma(t)=2 e^{i t}$ for $0 \leq t \leq \pi$.
(2) Provide an explicit description of the group of conformal automorphisms of the punctured disk $\mathbb{D}^{*}=\{z \in \mathbb{C}: 0<|z|<1\}$.
(3) Describe the following subsets of the complex plane:
(a) $\left\{z: e^{2 \pi z}=i\right\} \cap\left\{z:\left|z^{3}\right| \leq 1000\right\}$;
(b) $\left\{z: \operatorname{Im}\left(\frac{1}{i} \cdot \frac{z-3}{z+3}\right)>0\right\}$;
(c) the image of the vertical strip $\{z=x+i y: 0<x<\pi\}$ under $f(z)=\cos z$.
(4) Fix an integer $n \geq 0$. Suppose f is analytic on an open set containing the closed unit disk $\{z$: $|z| \leq 1\}$. Suppose further that $|f(z)|=1$ for all $|z|=1$ and that f has simple zeroes at a set of distinct points $\left\{a_{1}, \ldots, a_{n}\right\}$ in the disk. Find (and prove) a formula for f. Hint: consider first the cases where $n=0$ and $n=1$.
(5) Let U be an open, connected subset of C. Prove the Weierstrass/Hurwitz Theorem: if f_{n} is a sequence of non-vanishing analytic functions on U converging uniformly on compact subsets of U to a function f, then f is either a non-vanishing analytic function or $f \equiv 0$.

