PRELIMINARY EXAM IN ANALYSIS FALL 2015

INSTRUCTIONS:

(1) This exam has **three** parts: I (measure theory), II (functional analysis), and III (complex analysis). Do **three** problems from each part.

(2) In each problem, full credit requires proving that your answer is correct. You may quote and use theorems and formulas. But if a problem asks you to state or prove a theorem or a formula, you need to provide the full details.

Part I. Measure Theory

Do three of the following five problems.

- (1) Let *E* be a Lebesgue measurable subset of \mathbb{R}^d .
 - (a) Define what it means for a function $f : E \to \mathbb{R}$ to be measurable.
 - (b) Show that if *f* is measurable then so is |f|.
 - (c) Let *f* and *g* be measurable functions defined on *E*. Show that f + g is measurable.
- (2) Let (X, \mathcal{M}, μ) be a σ -finite measure space.
 - (a) State the Monotone Convergence Theorem.
 - (b) Show that if f_1, f_2, \ldots are nonnegative measurable functions on X then

$$\int_X \left(\sum_{n=1}^\infty f_n\right) d\mu = \sum_{n=1}^\infty \int_X f_n d\mu.$$

- (c) Suppose E_1, E_2, \ldots are measurable sets such that $\sum_{n=1}^{\infty} \mu(E_n) < \infty$. Using part (b), show that for almost every $x \in X$, the set $\{n \in \mathbb{N} \mid x \in E_n\}$ is finite.
- (3) Let *f* be an integrable function on \mathbb{R}^d with respect to the Lebesgue measure *m*. Show that for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $\int_E |f| dm < \varepsilon$ whenever *E* is a measurable set with $m(E) < \delta$.
- (4) Let $\{f_n\}_{n\geq 1}$ be a sequence of functions in $L^1(\mathbb{R})$ with respect to the Lebesgue measure *m*. Suppose that f_n converges **pointwise** to a function $f \in L^1(\mathbb{R})$. Under each of the following assumptions, does f_n converge to f in the L^1 norm?
 - (a) $|f_n| \le 1$.
 - (b) $\operatorname{supp}(f_n)$, the support of f_n , is contained in [0, 1].
 - (c) Both (a) and (b) hold.
 - (d) $m(\operatorname{supp}(f_n)) \leq 1$ and $|f_n| \leq 1$.

In each case, you must give a proof or a counterexample. You may quote theorems without proof.

(5) Let *f* be a measurable function on a σ -finite measure space (X, \mathcal{M}, μ) , with f > 0 almost everywhere. Show that if *E* is a measurable set with $\int_E f d\mu = 0$, then $\mu(E) = 0$.

Part II. Functional Analysis

Do three of the following five problems.

- (1) Let $\mathcal{F} : L^2(\mathbb{R}, dx) \to L^2(\mathbb{R}, dx)$ denote the Fourier transform on \mathbb{R} .
 - (a) Show that there exists a unique function $g \in L^2(\mathbb{R}, dx)$ such that $\mathcal{F}g(x) = e^{-|x|}$.
 - (b) Calculate $||g||_{L^2}$.
 - (c) Is $g \in C^{\infty}(\mathbb{R}) \cap L^{2}(\mathbb{R})$? Prove that your answer is correct.
 - (d) Is *g* of rapid decay, i.e., is it true that for all nonnegative integer *m* there is a constant C_m such that $|g(y)| \leq C_m (1 + |y|)^{-m}$ for all $y \in \mathbb{R}$?

- (2) Let H be a separable Hilbert space. Prove from scratch (without quoting theorems from a text) that every bounded linear functional $\Lambda: H \to \mathbb{C}$ is given by the inner product with some vector $v \in H$: $\Lambda(u) = \langle u, v \rangle$.
- (3) Let $1 \le p < \infty$ and q = p/(p-1) be a pair of conjugate exponents. Suppose that $f : [0,1] \to \mathbb{R}$ is a real valued function such that fg is integrable for all $g \in L^p[0, 1]$. Show that $f \in L^q[0, 1]$.
- (4) Suppose that *T* is an everywhere defined symmetric linear operator on a Hilbert space *H*, $\langle Tx, y \rangle =$ $\langle x, Ty \rangle$. Prove that *T* is a bounded operator.
- (5) The following is a sequence of problems on C[-1, 1] and $L^{\infty}[-1, 1]$.
 - (a) Define the Banach spaces C[-1, 1] and $L^{\infty}[-1, 1]$ where both spaces are equipped with the L^{∞} norm (i.e. define this norm). Here C[-1, 1] is the space of continuous functions on [-1, 1].
 - (b) Is C[-1,1] a closed subspace of $L^{\infty}[-1,1]$? Prove that your answer is correct.
 - (c) Let δ_0 be the point mass measure at 0. Show that $\langle \delta_0, f \rangle = f(0)$ defines a bounded linear functional on C[-1, 1]. What is its norm?
 - (d) Does δ_0 extend from C[-1,1] to $L^{\infty}[-1,1]$ as a bounded linear functional? Explain your answer. You can cite relevant theorems but you do not need to prove them.

Part III. Complex Analysis

Do three of the following five problems.

- (1) Let $f(z) = 1/(z^2 1)$.
 - (a) Show that *f* has a well-defined analytic primitive on the slit plane $\mathbb{C} \setminus [-1, 1]$.
 - (b) Compute the integral $\int_{\infty} f(z) dz$ along the path $\gamma(t) = 2e^{it}$ for $0 \le t \le \pi$.
- (2) Provide an explicit description of the group of conformal automorphisms of the punctured disk $\mathbb{D}^* = \{ z \in \mathbb{C} : 0 < |z| < 1 \}.$
- (3) Describe the following subsets of the complex plane:
 - (a) $\{z: e^{2\pi z} = i\} \cap \{z: |z^3| \le 1000\};$

 - (b) $\left\{ z : \operatorname{Im}\left(\frac{1}{i} \cdot \frac{z-3}{z+3}\right) > 0 \right\};$ (c) the image of the vertical strip $\{z = x + iy : 0 < x < \pi\}$ under $f(z) = \cos z$.
- (4) Fix an integer $n \ge 0$. Suppose f is analytic on an open set containing the closed unit disk $\{z : z \in \mathbb{N}\}$ $|z| \leq 1$. Suppose further that |f(z)| = 1 for all |z| = 1 and that *f* has simple zeroes at a set of distinct points $\{a_1, \ldots, a_n\}$ in the disk. Find (and prove) a formula for f. Hint: consider first the cases where n = 0 and n = 1.
- (5) Let U be an open, connected subset of C. Prove the Weierstrass/Hurwitz Theorem: if f_n is a sequence of non-vanishing analytic functions on U converging uniformly on compact subsets of *U* to a function *f*, then *f* is either a non-vanishing analytic function or $f \equiv 0$.